Course Title: CHEMICAL KINETICS Course Code: 342CHEM-3 Program: Bachelor in Chemistry Department: Chemistry College: College of Science Institution: Jazan University (JU) Version: **T104 2022** Last Revision Date: 12 January 2023 ## Table of Contents: | Content | Page | |--|------| | | | | A. General information about the course: | 3 | | 1. Teaching mode (mark all that apply) | 4 | | 2. Contact Hours (based on the academic semester) | 4 | | B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessme | | | C. Course Content | | | D. Students Assessment Activities | 6 | | E. Learning Resources and Facilities | 7 | | 1. References and Learning Resources | 7 | | 2. Required Facilities and equipment | 7 | | F. Assessment of Course Quality | 8 | | G. Specification Approval Data | 8 | | H. Attachments | 9 | | 1- Practical Work | 9 | | | | #### A. General information about the course: | Co | Course Identification | | | | | | |------|--|----------|---------|-----------|--------|---------| | 1. | Credit hours: | 3hrs | | | | | | 2. (| Course type | | | | | | | a. | University □ | College | De | partment⊠ | Track□ | Others□ | | b. | Required ⊠ | Elective | | | | | | | 3. Level/year at which this course is Level 7 Year 3 | | | | | | | 4. (| 4. Course general Description | | | | | | | (| Course Title | Course | Contact | Credit | | | | Course Title | Course
Number | Conta
Hours | | Credit
unit
(CU) | Year | Level | Pre-
requisite | |-------------------|------------------|----------------|-------|------------------------|-----------------|-------|-------------------| | | | Lec. | Prac. | (00) | | | requisite | | Chemical kinetics | 342CHEM-3 | 2 | 2 | 3 | 3 rd | 7 | 241CHEM-3 | Course objectives: They are to identify the following: - 1. The laws of reaction rate for different chemical reaction, - 2. Temperature effect on the reaction rate and Arrhenius equation. - 3. Collision theory of unimolecular and bimolecular reaction. **Syllabus: A-Theoretical contents** General concepts of chemical kinetics; rate of reaction and factors affecting on it , the reaction rate constant, order and Molecularity, pseudo- order reactions, the rate equations and half- life period- The derivation of the different rate laws and half- life period, zero, 1st, 2nd, and 3rd order reactions- Determination of the order of the reaction; integration, graphical, half- life period, Van,t Hoff,s differential and Ostwald isolation method-Rate laws for complex reactions; parallel, consecutive and chain reactions-Temperature effect on reaction rate- Derivation of Arrhenius equation- Determination of the activation energy of the chemical reactions – Effect of the catalyst on the activation energy-Reaction rate theories; Collision theory and Transition state theory. #### Syllabus: B- Practical contents Experimental work illustrating selected parts of the theoretical content. *See attachment - 5. Pre-requirements for this course (if any): 241CHEM3 - 6. Co-requirements for this course (if any): none - 7. Course Main Objective(s) This course aims to give the students, knowledge about the principles of chemical kinetics. 1. Teaching mode (mark all that apply) | No | Mode of Instruction | Contact Hours | Percentage | |----|---|---------------|------------| | 1. | Traditional classroom | 22 | 100% | | 2. | E-learning | | | | 3. | HybridTraditional classroomE-learning | | | | 4. | Distance learning | | | #### 2. Contact Hours (based on the academic semester) | No | Activity | Contact Hours | |----|-------------------|---------------| | 1. | Lectures | 22 | | 2. | Laboratory/Studio | 22 | | 3. | Field | | | 4. | Tutorial | | | 5. | Others (specify) | | | | Total | 44 | # B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | Code | Course Learning Outcomes | Code of
CLOs
aligned
with
program | Teaching
Strategies | Assessment
Methods | |------|---|---|--------------------------------|------------------------------| | 1.0 | Knowledge and understanding; (U) able to) | oon compl | etion of the course, | student will be | | 1.1 | Demonstrate a broad knowledge and understanding on principal of chemical kinetics, Concepts and terminology of chemical kinetics topics including; rate of reaction and factors affecting on it, the reaction rate constant and its units, order and Molecularity, pseudo- order reactions, the rate equations, half-life period, complex reactions, activation energy etc(P) | K(1.1) | Lectures, Class
Discussion. | Objective questions. | | 1.2 | Describe the different phenomena associated with chemical kinetics; | | Lectures, Class Discussion. | Essay
question s . | | Code | Course Learning Outcomes | Code of
CLOs
aligned
with
program | Teaching
Strategies | Assessment
Methods | |------|---|---|---|--| | | the different factors that can affect
the rate of the chemical reactions,
the difference between order and
Molecularity, methods of
determination of the order of the
reaction, Effect of the catalyst on the
activation energy, collision theory
and transition state theory etc
(P) | K(1.2) | | | | | | | | | | 2.0 | Skills; (Upon completion of the cou | irse, stude | nt will be able to) | | | 2.1 | Demonstrate the gained knowledge and skills to solve problems associated with different topics in the course as the reaction rate, the rate constant, half-life period, order of the reaction, the activation energy from applying the Arrhenius equation, Arrhenius factor, collision constant. (P) | S(2.1) | Lectures, Class
Discussion. | Solving
Problems. | | 2.2 | Perform experiments in chemical kinetics, record, analyze, interpret the scientific data, and write reports. (1) | S(2.2) | Lab work, group
work | Objective questions, Essay questions, lab report rubric. | | 2.3 | Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (1) | S(2.3) | lab
demonstrations,
hands-on student
learning activities . | Safety exam | | 3.0 | Values, autonomy, and responsibiliwill be able to) | ty ; (Upon | completion of the co | urse, student | | 3.1 | Working as a group leader in cooperation with other colleagues. (P) | V(3.1) | lab demonstrations , whole group and small group discussion | Practical
group Leader
Rubric | ### C. Course Content | No | List of Topics | Conta
ct
Hours | |----|---|----------------------| | 1. | General concepts of chemical kinetics. | 4 | | 2. | Simple reactions; zero, 1st, 2nd, and 3rd order reactions. | 6 | | 3. | Determination of the order of the reaction; integration, graphical, half-life period, Van't Hoff's differential and Ostwald isolation method. | 3 | | 4. | Complex reactions; parallel, consecutive and chain reactions. | 3 | | 5. | Arrhenius equation. | 2 | | 6. | Collision theory. | 2 | | 7. | Transition state theory. | 2 | | 8. | Selected experiments related to the course topics | 22 | | | Total | 44 | ### **D. Students Assessment Activities** | No | Assessment Activities * | Assessment
timing
(in week no) | Percentage of Total
Assessment Score | |----|--------------------------|--------------------------------------|---| | 1. | Homework assignment. | <i>3-8</i> | <i>5</i> % | | 2. | Mid-term exam. | 6-8 | 15 % | | 3. | LAB Sheet. | 11 | <i>5</i> % | | 4. | Quiz in Safety. | 11 | 3% | | 5 | Final practical exam. | 11 | 9 % | | 6 | Lab report. | 2-10 | 10 % | | 7 | Group Leader evaluation. | 2-10 | 3% | | 8 | Final Exam. | 12-13 | 50% | | | Total | | 100 % | ^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.) ## E. Learning Resources and Facilities #### 1. References and Learning Resources | • Chemical Kinetics and Reaction Dynamics, 1st edition, Paul L
Houston, 2006. | |---| | Chemical Kinetics and Reaction Dynamics, Santosh K
Upadhyay, Springer, 2006, ISBN 1-4020-4546-8 (HB) - ISBN 1
4020-4547-6 (e-book) Principles of Chemical Kinetics, 2nd edition, James E. House,
2007. | | Supportive References Atkins' Physical Chemistry 11e: Volume 1: Thermodynamics and Kinetics Oct 30, 2018 | | | اساسيات الحركية الكيميائية – د فكيهة محمد الطيب هيكل - دار النشر الدولي - الطبعة الأولى 2003 م | |--------------------------|--| | Electronic Materials | course contents and materials are posted on Black board sites. | | Other Learning Materials | https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpth=&query =kinetic+energy&type=wiki | ### 2. Required Facilities and equipment | Items | Resources | |---|---| | facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | 1 Lecture room(s) for groups of 50 students
1 Lab room for group of 25 students. | | Technology equipment (projector, smart board, software) | Smart board, Data show, Internet 1 Computer laboratory for groups of 25 students. | | Other equipment (depending on the nature of the specialty) | Water distillation device, Ice maker, water bath and Balance. | ## F. Assessment of Course Quality | Assessment Areas/Issues | Assessor | Assessment Methods | | | |---|---------------------------------|---|--|--| | Effectiveness of teaching | Student | Likert-type Survey CES)
Indirect | | | | Effectiveness of students assessment | Instructor & Course coordinator | Classroom evaluation (direct & indirect | | | | Quality of learning resources | Program coordinator | Indirect | | | | The extent to which CLOs have been achieved | Assessment committee | Indirect | | | | Other | | | | | Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect) ## G. Specification Approval Data | COUNCIL
/COMMITTEE | Chemistry Department Council CHEMS2301 | |-----------------------|--| | REFERENCE NO. | CHEMS230104 | | DATE | 11/1/2023G – 18/06/1444H | ## H. Attachments ### **1- Practical Work** | Week | Experimental Title | Chemicals used | Remarks | |------|--|--|---------| | 1 | Introduction and lab safety | | | | 2 | Catalytic decomposition of hydrogen peroxide | H ₂ O ₂ , KMnO4, sulphuric acid and MnO ₂ | None | | 3 | Kinetic study of hydrolysis of ethyl acetate catalyzed by acid | Ethyl Acetate,HCl, Phenolphthalein and NaOH | None | | 4 | Saponification of ethyl acetate. | Ethyl Acetate, Phenolphthalein and
NaOH | None | | 5 | Determination of rate constant of lodination of acetone reaction | Acetone, Iodine solution, sulphuric acid, sodium thiosulphate, Starch indicator and Sodium acetate | None | | 6 | Effect of temperature on the reaction rate of hydrolysis of ethyl acetate catalyzed by acid and calculation of activation energy | ethyl acetate, Sodium acetate and
Hydrochloric acid | None | | 7 | Determination of rate
constant of persulphate-
iodide reaction | Potassium persulphate Potassium iodide, Sodium thiosulphate and Starch indicator. | None | | 8 | Reaction rate of magnesium and hydrochloric acid | Magnesium and Hydrochloric acid | None | | 9 | Revision | | | | 10 | Final Exam | | | #### 2- Blue Print | Course Name | Chemical Kinetics | |-------------|-------------------| | Course Code | 342 CHEM-3 | | PLOs | K1 | K2 | S1 | S2 | S3 | S4 | V1 | V2 | |-------|-----|-----|-----|-----|-----|-----|-----|-----| | CLOs | 1.1 | 1.2 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 3.2 | | Marks | 18 | 18 | 34 | 24 | 3 | | 3 | | | Learning
Domain | PLOs | CLOs | Assessment
Type | Assessment
Tool | No of
Questions | Marks of the
Assessment | Weight of
the
Assessment | |--------------------|------------|--------------|--------------------|--------------------|--------------------|----------------------------|--------------------------------| | | K1 | 1.1 | H.W | Objective question | 4 | 1 | 1 | | | | (18M) | Mid term | Objective question | 8 | 4 | 4 | | Knowledge & | | | Final Exam | Objective question | 13 | 13 | 13 | | understanding | K2 | 1.2 | H.W | Essay question | 2 | 1 | 1 | | | | (18M) | Mid term | Essay question | 2 | 4 | 4 | | | | | Final Exam | Essay question | 6 | 13 | 13 | | | S1 | 2.1
(34M) | H.W | Solving Problems | 3 | 3 | 3 | | | | (-) | Mid term | Solving Problems | 3 | 7 | 7 | | | | | Final Exam | Solving Problems | 6 | 24 | 24 | | | S2 | 2.2 | Practical | Objective question | 6 | 3 | 3 | | Skills | | (24M) | Sheet | Essay question | 2 | 2 | 2 | | | | | Lab Report | Lab report | 7 | 10 | 10 | | | | | Final Lab
Exam | Lab Exam | 1 | 9 | 9 | | | S 3 | 2.3
(3M) | Safety Quiz | Objective question | 6 | 3 | 3 | | Value | V1 | 3.1 | Continuous | Group Leader | - | 3 | 3 | | | TOTAL | (3 M)
100 | assessment | evaluation rubric | | | 100 | | | TOTAL | 100 | | | | | 100 |