

Course Title: CHEMICAL KINETICS

Course Code: 342CHEM-3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 12 January 2023

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessme	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	7
1. References and Learning Resources	7
2. Required Facilities and equipment	7
F. Assessment of Course Quality	8
G. Specification Approval Data	8
H. Attachments	9
1- Practical Work	9

A. General information about the course:

Co	Course Identification					
1.	Credit hours:	3hrs				
2. (Course type					
a.	University □	College	De	partment⊠	Track□	Others□
b.	Required ⊠	Elective				
	3. Level/year at which this course is Level 7 Year 3					
4. (4. Course general Description					
(Course Title	Course	Contact	Credit		

Course Title	Course Number	Conta Hours		Credit unit (CU)	Year	Level	Pre- requisite
		Lec.	Prac.	(00)			requisite
Chemical kinetics	342CHEM-3	2	2	3	3 rd	7	241CHEM-3

Course objectives: They are to identify the following:

- 1. The laws of reaction rate for different chemical reaction,
- 2. Temperature effect on the reaction rate and Arrhenius equation.
- 3. Collision theory of unimolecular and bimolecular reaction.

Syllabus: A-Theoretical contents

General concepts of chemical kinetics; rate of reaction and factors affecting on it , the reaction rate constant, order and Molecularity, pseudo- order reactions, the rate equations and half- life period- The derivation of the different rate laws and half- life period, zero, 1st, 2nd, and 3rd order reactions- Determination of the order of the reaction; integration, graphical, half- life period, Van,t Hoff,s differential and Ostwald isolation method-Rate laws for complex reactions; parallel, consecutive and chain reactions-Temperature effect on reaction rate- Derivation of Arrhenius equation- Determination of the activation energy of the chemical reactions – Effect of the catalyst on the activation energy-Reaction rate theories; Collision theory and Transition state theory.

Syllabus: B- Practical contents

Experimental work illustrating selected parts of the theoretical content.

*See attachment

- 5. Pre-requirements for this course (if any): 241CHEM3
- 6. Co-requirements for this course (if any): none
- 7. Course Main Objective(s)

This course aims to give the students, knowledge about the principles of chemical kinetics.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (U) able to)	oon compl	etion of the course,	student will be
1.1	Demonstrate a broad knowledge and understanding on principal of chemical kinetics, Concepts and terminology of chemical kinetics topics including; rate of reaction and factors affecting on it, the reaction rate constant and its units, order and Molecularity, pseudo- order reactions, the rate equations, half-life period, complex reactions, activation energy etc(P)	K(1.1)	Lectures, Class Discussion.	Objective questions.
1.2	Describe the different phenomena associated with chemical kinetics;		Lectures, Class Discussion.	Essay question s .

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	the different factors that can affect the rate of the chemical reactions, the difference between order and Molecularity, methods of determination of the order of the reaction, Effect of the catalyst on the activation energy, collision theory and transition state theory etc (P)	K(1.2)		
2.0	Skills; (Upon completion of the cou	irse, stude	nt will be able to)	
2.1	Demonstrate the gained knowledge and skills to solve problems associated with different topics in the course as the reaction rate, the rate constant, half-life period, order of the reaction, the activation energy from applying the Arrhenius equation, Arrhenius factor, collision constant. (P)	S(2.1)	Lectures, Class Discussion.	Solving Problems.
2.2	Perform experiments in chemical kinetics, record, analyze, interpret the scientific data, and write reports. (1)	S(2.2)	Lab work, group work	Objective questions, Essay questions, lab report rubric.
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (1)	S(2.3)	lab demonstrations, hands-on student learning activities .	Safety exam
3.0	Values, autonomy, and responsibiliwill be able to)	ty ; (Upon	completion of the co	urse, student
3.1	Working as a group leader in cooperation with other colleagues. (P)	V(3.1)	lab demonstrations , whole group and small group discussion	Practical group Leader Rubric

C. Course Content

No	List of Topics	Conta ct Hours
1.	General concepts of chemical kinetics.	4
2.	Simple reactions; zero, 1st, 2nd, and 3rd order reactions.	6
3.	Determination of the order of the reaction; integration, graphical, half-life period, Van't Hoff's differential and Ostwald isolation method.	3
4.	Complex reactions; parallel, consecutive and chain reactions.	3
5.	Arrhenius equation.	2
6.	Collision theory.	2
7.	Transition state theory.	2
8.	Selected experiments related to the course topics	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment.	<i>3-8</i>	<i>5</i> %
2.	Mid-term exam.	6-8	15 %
3.	LAB Sheet.	11	<i>5</i> %
4.	Quiz in Safety.	11	3%
5	Final practical exam.	11	9 %
6	Lab report.	2-10	10 %
7	Group Leader evaluation.	2-10	3%
8	Final Exam.	12-13	50%
	Total		100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

• Chemical Kinetics and Reaction Dynamics, 1st edition, Paul L Houston, 2006.
 Chemical Kinetics and Reaction Dynamics, Santosh K Upadhyay, Springer, 2006, ISBN 1-4020-4546-8 (HB) - ISBN 1 4020-4547-6 (e-book) Principles of Chemical Kinetics, 2nd edition, James E. House, 2007.
Supportive References Atkins' Physical Chemistry 11e: Volume 1: Thermodynamics and Kinetics Oct 30, 2018

	اساسيات الحركية الكيميائية – د فكيهة محمد الطيب هيكل - دار النشر الدولي - الطبعة الأولى 2003 م
Electronic Materials	course contents and materials are posted on Black board sites.
Other Learning Materials	https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpth=&query =kinetic+energy&type=wiki

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students 1 Lab room for group of 25 students.
Technology equipment (projector, smart board, software)	Smart board, Data show, Internet 1 Computer laboratory for groups of 25 students.
Other equipment (depending on the nature of the specialty)	Water distillation device, Ice maker, water bath and Balance.

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods		
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect		
Effectiveness of students assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect		
Quality of learning resources	Program coordinator	Indirect		
The extent to which CLOs have been achieved	Assessment committee	Indirect		
Other				

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	Chemistry Department Council CHEMS2301
REFERENCE NO.	CHEMS230104
DATE	11/1/2023G – 18/06/1444H

H. Attachments

1- Practical Work

Week	Experimental Title	Chemicals used	Remarks
1	Introduction and lab safety		
2	Catalytic decomposition of hydrogen peroxide	H ₂ O ₂ , KMnO4, sulphuric acid and MnO ₂	None
3	Kinetic study of hydrolysis of ethyl acetate catalyzed by acid	Ethyl Acetate,HCl, Phenolphthalein and NaOH	None
4	Saponification of ethyl acetate.	Ethyl Acetate, Phenolphthalein and NaOH	None
5	Determination of rate constant of lodination of acetone reaction	Acetone, Iodine solution, sulphuric acid, sodium thiosulphate, Starch indicator and Sodium acetate	None
6	Effect of temperature on the reaction rate of hydrolysis of ethyl acetate catalyzed by acid and calculation of activation energy	ethyl acetate, Sodium acetate and Hydrochloric acid	None
7	Determination of rate constant of persulphate- iodide reaction	Potassium persulphate Potassium iodide, Sodium thiosulphate and Starch indicator.	None
8	Reaction rate of magnesium and hydrochloric acid	Magnesium and Hydrochloric acid	None
9	Revision		
10	Final Exam		

2- Blue Print

Course Name	Chemical Kinetics
Course Code	342 CHEM-3

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2
Marks	18	18	34	24	3		3	

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1	H.W	Objective question	4	1	1
		(18M)	Mid term	Objective question	8	4	4
Knowledge &			Final Exam	Objective question	13	13	13
understanding	K2	1.2	H.W	Essay question	2	1	1
		(18M)	Mid term	Essay question	2	4	4
			Final Exam	Essay question	6	13	13
	S1	2.1 (34M)	H.W	Solving Problems	3	3	3
		(-)	Mid term	Solving Problems	3	7	7
			Final Exam	Solving Problems	6	24	24
	S2	2.2	Practical	Objective question	6	3	3
Skills		(24M)	Sheet	Essay question	2	2	2
			Lab Report	Lab report	7	10	10
			Final Lab Exam	Lab Exam	1	9	9
	S 3	2.3 (3M)	Safety Quiz	Objective question	6	3	3
Value	V1	3.1	Continuous	Group Leader	-	3	3
	TOTAL	(3 M) 100	assessment	evaluation rubric			100
	TOTAL	100					100

